verlet.js 源码分析--动画原理
本系列文章可以在这里查看:verletjs动画框架
你可以从这里查看该项目的所有源文件:https://github.com/subprotocol/verlet-js
涉及文件:lib/verlet.js
, lib/constraint.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
// 构造函数
function VerletJS(width, height, canvas) {
this.width = width;
this.height = height;
this.canvas = canvas;
this.ctx = canvas.getContext("2d");
// 鼠标位置也是一个向量
this.mouse = new Vec2(0,0);
this.mouseDown = false;
// 被鼠标拖拽的节点
this.draggedEntity = null;
this.selectionRadius = 20;
this.highlightColor = "#4f545c";
// 边界检测
this.bounds = function (particle) {
if (particle.pos.y > this.height-1)
particle.pos.y = this.height-1;
if (particle.pos.x < 0)
particle.pos.x = 0;
if (particle.pos.x > this.width-1)
particle.pos.x = this.width-1;
}
var _this = this;
// prevent context menu
this.canvas.oncontextmenu = function(e) {
e.preventDefault();
};
this.canvas.onmousedown = function(e) {
_this.mouseDown = true;
var nearest = _this.nearestEntity();
if (nearest) {
_this.draggedEntity = nearest;
}
};
this.canvas.onmouseup = function(e) {
_this.mouseDown = false;
_this.draggedEntity = null;
};
this.canvas.onmousemove = function(e) {
var rect = _this.canvas.getBoundingClientRect();
_this.mouse.x = e.clientX - rect.left;
_this.mouse.y = e.clientY - rect.top;
};
// 重力
this.gravity = new Vec2(0,0.2);
// 空气阻力
this.friction = 0.99;
// 地面碰撞产生的阻力
this.groundFriction = 0.8;
// 存储所有的组合对象
this.composites = [];
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/*
* 关键方法,用于改变在一个时刻内各粒子对象和约束对象的位移情况
* @param {Number} step 幅度,用于决定约束对象的“振荡”幅度
*/
VerletJS.prototype.frame = function(step) {
var i, j, c;
for (c in this.composites) {
// 处理组合对象中的所有粒子对象
for (i in this.composites[c].particles) {
var particles = this.composites[c].particles;
// 用当前位置减去前一时刻位置得到速度,并乘以空气阻力得到当前时刻的速度
var velocity = particles[i].pos.sub(particles[i].lastPos).scale(this.friction);
// 当粒子和地面接触(碰撞)后
// 坐标y值小于画布高度,用length2主要是为了确保精度
if (particles[i].pos.y >= this.height-1 && velocity.length2() > 0.000001) {
// 当前时刻的速度大小:标量
var m = velocity.length();
velocity.x /= m;
velocity.y /= m;
// 和地面碰撞后的速度损失
// 注意,在构造函数中有一个bounds函数用于边界修正
velocity.mutableScale(m*this.groundFriction);
}
// 更新位置
particles[i].lastPos.mutableSet(particles[i].pos);
// 重力产生的加速度
particles[i].pos.mutableAdd(this.gravity);
// 粒子的位移更新
particles[i].pos.mutableAdd(velocity);
}
}
// 如果是鼠标拖拽节点,则改变该节点的位置
if (this.draggedEntity)
this.draggedEntity.pos.mutableSet(this.mouse);
// “惯性”效果
var stepCoef = 1/step;
for (c in this.composites) {
var constraints = this.composites[c].constraints;
for (i=0;i<step;++i)
for (j in constraints)
constraints[j].relax(stepCoef);
}
// 对粒子位置坐边界检测
for (c in this.composites) {
var particles = this.composites[c].particles;
for (i in particles)
this.bounds(particles[i]);
}
}
/**
* 核心方法,用于对所有的组合中的粒子,约束进行重绘
*/
VerletJS.prototype.draw = function() {
var i, c;
this.ctx.clearRect(0, 0, this.canvas.width, this.canvas.height);
for (c in this.composites) {
// 如果有自定义的drawConstraints方法则调用,否则使用默认的draw方法
if (this.composites[c].drawConstraints) {
this.composites[c].drawConstraints(this.ctx, this.composites[c]);
} else {
var constraints = this.composites[c].constraints;
for (i in constraints)
constraints[i].draw(this.ctx);
}
// draw particles
if (this.composites[c].drawParticles) {
this.composites[c].drawParticles(this.ctx, this.composites[c]);
} else {
var particles = this.composites[c].particles;
for (i in particles)
particles[i].draw(this.ctx);
}
}
// highlight nearest / dragged entity
var nearest = this.draggedEntity || this.nearestEntity();
if (nearest) {
this.ctx.beginPath();
this.ctx.arc(nearest.pos.x, nearest.pos.y, 8, 0, 2*Math.PI);
this.ctx.strokeStyle = this.highlightColor;
this.ctx.stroke();
}
}
/*
* 检测离鼠标最近的粒子对象
*/
VerletJS.prototype.nearestEntity = function() {
var c, i;
var d2Nearest = 0;
var entity = null;
var constraintsNearest = null;
// find nearest point
for (c in this.composites) {
var particles = this.composites[c].particles;
for (i in particles) {
// 计算粒子对象和鼠标的位置
var d2 = particles[i].pos.dist2(this.mouse);
// 如果该位置小于粒子的半径则代表区域重合,发生碰撞。及离鼠标最近;已此迭代
if (d2 <= this.selectionRadius*this.selectionRadius && (entity == null || d2 < d2Nearest)) {
entity = particles[i];
constraintsNearest = this.composites[c].constraints;
d2Nearest = d2;
}
}
}
// 在最近的粒子中寻找固定粒子对象
for (i in constraintsNearest)
if (constraintsNearest[i] instanceof PinConstraint && constraintsNearest[i].a == entity)
entity = constraintsNearest[i];
return entity;
}